Modelo científico

En ciencias puras y, sobre todo, en ciencias aplicadas, se denomina modelo científico a una representación abstracta, conceptual, gráfica o visual física de fenómenos, sistemas o procesos a fin de analizar, describir, explicar, simular (en general, explorar, controlar y predecir) esos fenómenos o procesos. Un modelo permite determinar un resultado final a partir de unos datos de entrada. Se considera que la creación de un modelo es una parte esencial de toda actividad científica.

Aún cuando hay pocos acuerdos generales acerca del uso de modelos, La ciencia moderna ofrece una colección creciente de métodos, técnicas y teorías acerca de los diversos tipos de modelos. Las teorías y/o propuestas sobre la construcción, empleo y validación de modelos se encuentran en disciplinas tales como la metodología, filosofía de la ciencia, teoría general de los sistemas y en el campo relativamente nuevo de visualización científica. En la práctica, diferentes ramas o disciplinas científicas tienen sus propias ideas y normas acerca de tipos específicos de modelos. Sin embargo, y en general, todos siguen los principios del modelado.

Para hacer un modelo es necesario plantear una serie de hipótesis, de manera que lo que se quiere estudiar esté suficientemente plasmado en la representación, aunque también se busca, normalmente, que sea lo bastante sencillo como para poder ser manipulado y estudiado.

Teoría

Una teoría (del griego θεωρία theōría​) es un sistema lógico-deductivo​ constituido por un conjunto de hipótesis, un campo de aplicación (de lo que trata la teoría, el conjunto de cosas que explica) y algunas reglas que permitan extraer consecuencias de las hipótesis. En general las teorías sirven para confeccionar modelos científicos que interpreten un conjunto amplio de observaciones, en función de los axiomas o principios, supuestos y postulados, de la teoría.

Plasma

En física y química, se denomina plasma (del latín plasma, y del griego πλάσμα, formación) al cuarto estado de agregación de la materia, un estado fluido similar al estado gaseoso pero en el que determinada proporción de sus partículas, están cargadas eléctricamente (ionizadas) y no poseen equilibrio electromagnético, por eso son buenos conductores eléctricos y sus partículas responden fuertemente a las interacciones electromagnéticas de largo alcance.​ En cierta forma y de manera sintética, el plasma se puede caracterizar como un gas ionizado.

El plasma tiene características propias que no se dan en los sólidos, líquidos o gases, por lo que es considerado otro estado de agregación de la materia. Como el gas, el plasma no tiene una forma o volumen definido, a no ser que esté encerrado en un contenedor, pero a diferencia del gas en el que no existen efectos colectivos importantes, el plasma bajo la influencia de un campo magnético puede formar estructuras como filamentos, rayos y capas dobles.​ Los átomos de este estado se mueven libremente, cuanto más alta es la temperatura más rápido se mueven los átomos en el gas, y en el momento de colisionar la velocidad es tan alta que se produce un desprendimiento de electrones.​

Calentar un gas puede ionizar sus moléculas o átomos (reduciendo o incrementado su número de electrones para formar iones), convirtiéndolo en un plasma.​ La ionización también puede ser inducida por otros medios, como la aplicación de un fuerte campo electromagnético mediante un láser o un generador de microondas, y es acompañado por la disociación de los enlaces covalentes, si están presentes.​

El plasma es el estado de agregación más abundante en el Universo, y la mayor parte de la materia visible se encuentra en estado de plasma, la mayoría del cual es el enrarecido plasma intergaláctico (particularmente el centro de intracúmulos) y en las estrellas.

Estrella

Una estrella (del latín: stella) es una esfera luminosa de plasma que mantiene su forma gracias a su propia gravedad. La estrella más cercana a la Tierra es el Sol.​ Otras estrellas son visibles a simple vista desde la Tierra durante la noche, apareciendo como una diversidad de puntos luminosos fijos en el cielo debido a su inmensa distancia de la misma.​ Históricamente, las estrellas más prominentes fueron agrupadas en constelaciones y asterismos, y las estrellas más brillantes pasaron a denominarse con nombres propios. Los astrónomos han recopilado un extenso catálogo, proporcionándole a las estrellas designaciones estandarizadas. Sin embargo, la mayoría de las estrellas en el Universo, incluyendo todas las que están fuera de nuestra galaxia, la Vía Láctea, son invisibles a simple vista desde la Tierra. De hecho, la mayoría son invisibles desde la dicha Tierra incluso a través de los telescopios de gran potencia.

Durante una porción de su vida, una estrella brilla debido a la fusión termonuclear del hidrógeno en helio en su núcleo, liberando energía que atraviesa el interior de la estrella y, después, se irradia hacia el espacio exterior. Cuando el hidrógeno en el núcleo de una estrella está casi agotado, casi todos los elementos más pesados que el helio producidos de forma natural son creados por nucleosíntesis estelar durante la vida de la estrella y, en algunas estrellas, por nucleosíntesis de supernovas cuando explotan. Al finalizar su vida, una estrella también puede contener materia degenerada.

Los astrónomos pueden determinar la masa, edad, metalicidad (composición química), y muchas otras propiedades de una estrella mediante la observación de su movimiento a través del espacio, su luminosidad y espectro, respectivamente. La masa total de una estrella es el principal determinante de su evolución y destino final. Otras características de una estrella, incluyendo el diámetro y la temperatura, cambian a lo largo de su vida, mientras que el entorno de una estrella afecta a su rotación y movimiento. Una gráfica de dispersión de muchas estrellas que hace referencia a su luminosidad, magnitud absoluta, temperatura superficial y tipo espectral, conocido como el diagrama de Hertzsprung-Russell (Diagrama H-R), permite determinar la edad y el estado evolutivo de una estrella.

La vida de una estrella comienza con el colapso gravitacional de una nebulosa gaseosa de material compuesto principalmente de hidrógeno, junto con helio y trazas de elementos más pesados. Cuando el núcleo estelar es suficientemente denso, el hidrógeno comienza a convertirse en helio a través de la fusión nuclear, liberando energía durante el proceso.​ Los restos del interior de la estrella portan la energía fuera del núcleo a través de una serie combinatoria de procesos de radiación y convección.

La presión interna de la estrella evita colapsarse aún más bajo su propia gravedad. Cuando se agota el combustible de hidrógeno en el núcleo, una estrella con al menos 0,4 veces la masa del Sol se expande hasta convertirse en una gigante roja. En algunos casos fusionando elementos más pesados en el núcleo o en capas externas alrededor del núcleo (como el carbono o el oxígeno). Entonces la estrella evoluciona hasta una forma degenerada, expulsando una porción de su materia en el medio interestelar, donde contribuirá a la formación de una nueva generación de estrellas. Mientras tanto, el núcleo se convierte en un remanente estelar: una enana blanca, una estrella de neutrones, o (si es lo suficientemente masiva) un agujero negro.

Los sistema binarios y multibinarios consisten de dos o más estrellas que están unidas gravitacionalmente entre sí, y por lo general se mueven una alrededor de la otra en órbitas estables. Cuando dos estrellas poseen una órbita relativamente cercana, su interacción gravitatoria puede tener un impacto significativo en su evolución.​ Las estrellas, unidas gravitacionalmente entre sí, pueden formar parte de estructuras mucho más grandes, tales como cúmulos estelares o galaxias.

Máquina térmica

Una máquina térmica es un conjunto de elementos mecánicos que permite intercambiar energía, generalmente a través de un eje, mediante la variación de energía de un fluido que varía su densidad significativamente al atravesar la máquina. Se trata de una máquina de fluido en la que varía el volumen específico del fluido en tal magnitud que los efectos mecánicos y los efectos térmicos son interdependientes.

Por el contrario, en una máquina hidráulica, que es otro tipo de máquina de fluido, la variación de densidad es suficientemente pequeña como para poder desacoplar el análisis de los efectos mecánicos y el análisis de los efectos térmicos, llegando a despreciar los efectos térmicos en gran parte de los casos. Tal es el caso de una bomba hidráulica, a través de la cual pasa líquido. Alejándose de lo que indica la etimología de la palabra “hidráulica”, también puede considerarse como máquina hidráulica un ventilador, pues, aunque el aire es un fluido compresible, la variación de volumen específico no es muy significativa con el propósito de que no se desprenda la capa límite.

En una máquina térmica, la compresibilidad del fluido no es despreciable y es necesario considerar su influencia en la transformación de energía.

Termodinámica

La termodinámica es la rama de la física que describe los estados de equilibrio termodinámico a nivel macroscópico. El Diccionario de la lengua española de la Real Academia, por su parte, define la termodinámica como la rama de la física encargada del estudio de la interacción entre el calor y otras manifestaciones de la energía.​ Constituye una teoría fenomenológica, a partir de razonamientos deductivos, que estudia sistemas reales, sin modelizar y sigue un método experimental. Los estados de equilibrio se estudian y definen por medio de magnitudes extensivas tales como la energía interna, la entropía, el volumen o la composición molar del sistema,​ o por medio de magnitudes no-extensivas derivadas de las anteriores como la temperatura, presión y el potencial químico, otras magnitudes, tales como la imanación, la fuerza electromotriz y las asociadas con la mecánica de los medios continuos en general también pueden tratarse por medio de la termodinámica.​

La termodinámica ofrece un aparato formal aplicable únicamente a estados de equilibrio,​ definidos como aquel estado hacia “el que todo sistema tiende a evolucionar y caracterizado porque en el mismo todas las propiedades del sistema quedan determinadas por factores intrínsecos y no por influencias externas previamente aplicadas”.Tales estados terminales de equilibrio son, por definición, independientes del tiempo, y todo el aparato formal de la termodinámica (todas las leyes y variables termodinámicas) se definen de tal modo que podría decirse que un sistema está en equilibrio si sus propiedades pueden describirse consistentemente empleando la teoría termodinámica. Los estados de equilibrio son necesariamente coherentes con los contornos del sistema y las restricciones a las que esté sometido.

Por medio de los cambios producidos en estas restricciones (esto es, al retirar limitaciones tales como impedir la expansión del volumen del sistema, impedir el flujo de calor, etc.), el sistema tenderá a evolucionar de un estado de equilibrio a otro,​ comparando ambos estados de equilibrio, la termodinámica permite estudiar los procesos de intercambio de masa y energía térmica entre sistemas térmicos diferentes.

Como ciencia fenomenológica, la termodinámica no se ocupa de ofrecer una interpretación física de sus magnitudes. La primera de ellas, la energía interna, se acepta como una manifestación macroscópica de las leyes de conservación de la energía a nivel microscópico, que permite caracterizar el estado energético del sistema macroscópico.​ El punto de partida para la mayor parte de las consideraciones termodinámicas son los que postulan que la energía puede ser intercambiada entre sistemas en forma de calor o trabajo, y que solo puede hacerse de una determinada manera. También se introduce una magnitud llamada entropía,​ que se define como aquella función extensiva de la energía interna, el volumen y la composición molar que toma valores máximos en equilibrio: el principio de maximización de la entropía define el sentido en el que el sistema evoluciona de un estado de equilibrio a otro.​ Es la mecánica estadística, íntimamente relacionada con la termodinámica, la que ofrece una interpretación física de ambas magnitudes: la energía interna se identifica con la suma de las energías individuales de los átomos y moléculas del sistema, y la entropía mide el grado de orden y el estado dinámico de los sistemas, y tiene una conexión muy fuerte con la teoría de información.​ En la termodinámica se estudian y clasifican las interacciones entre diversos sistemas, lo que lleva a definir conceptos como sistema termodinámico y su contorno. Un sistema termodinámico se caracteriza por sus propiedades, relacionadas entre sí mediante las ecuaciones de estado. Estas se pueden combinar para expresar la energía interna y los potenciales termodinámicos, útiles para determinar las condiciones de equilibrio entre sistemas y los procesos espontáneos.

Con estas herramientas, la termodinámica describe cómo los sistemas reaccionan a los cambios en su entorno. Esto se puede aplicar a una amplia variedad de ramas de la ciencia y de la ingeniería, tales como motores, cambios de fase, reacciones químicas, fenómenos de transporte, e incluso agujeros negros.

Oficina Internacional de Pesas y Medidas

La Oficina Internacional de Pesas y Medidas (BIPM, por sus siglas en francés, Bureau International des Poids et Mesures, a menudo traducido también como Oficina Internacional de Pesos y Medidas y Buró Internacional de Pesos y Medidas) es el coordinador mundial de la metrología. Su sede está ubicada en Sèvres, suburbio de París. Es la depositaria del kilogramo patrón internacional, única unidad materializada del Sistema Internacional de Unidades (SI) en uso, procedente del viejo Sistema métrico decimal.

Históricamente la metrología ha pasado por diferentes etapas, inicialmente su máxima preocupación y el objeto de su estudio fue el análisis de los sistemas de pesas y medidas antiguos. Sin embargo, desde mediados del siglo XVI el interés por la determinación de la medida del globo terrestre y los trabajos correspondientes pusieron de manifiesto la necesidad de un sistema de pesas y medidas universal, proceso que se vio agudizado durante la revolución industrial y culminó con la creación de la Oficina Internacional de Pesos y Medidas, y la construcción de patrones para el metro y el kilogramo el 20 de mayo de 1875, como unidades básicas del que, se llamó entonces, Sistema métrico decimal.​ La Oficina define que su cometido es “asegurar en todo el Mundo la uniformidad de las mediciones y su trazabilidad al Sistema Internacional de Unidades”.

Sistema Internacional de Unidades

El Sistema Internacional de Unidades (abreviado SI) es el sistema de unidades que se usa en casi todos los países del mundo. Está constituido por siete unidades básicas (amperio, kelvin, segundo, metro, kilogramo, candela, mol) más un número ilimitado de unidades derivadas de las cuales 22 tienen nombres especiales, prefijos para denotar múltiplos y submúltiplos de las unidades y reglas para escribir el valor de magnitudes físicas.

Las unidades del SI constituyen referencia internacional de las indicaciones de los instrumentos de medición, a las cuales están referidas mediante una concatenación ininterrumpida de calibraciones o comparaciones.

Una de las características trascendentales del SI es que sus unidades se basan en fenómenos físicos fundamentales. Excepción única es la unidad de la magnitud masa, el kilogramo, definida como «la masa del prototipo internacional del kilogramo», un cilindro de platino e iridio almacenado en una caja fuerte de la Oficina Internacional de Pesas y Medidas. Esto permite lograr la equivalencia de las medidas realizadas con instrumentos similares, utilizados y calibrados en lugares distantes y, por ende, asegurar (sin necesidad de duplicación de ensayos y mediciones) el cumplimiento de las características de los productos que son objeto de transacciones en el comercio internacional, su intercambiabilidad.

Está en curso una revisión de las definiciones de las unidades básicas en términos de constantes fundamentales, sin excepción.

El SI se creó en 1960 por la 11.a Conferencia General de Pesas y Medidas, durante la cual inicialmente se reconocieron seis unidades físicas básicas (las actuales excepto el mol). El mol se añadió en 1971. Entre los años 2006 y 2009 se armonizó el Sistema Internacional de Magnitudes (a cargo de las organizaciones ISO y CEI) con el SI. El resultado es el estándar ISO/IEC 80000.

Presión

La presión (símbolo p) es una magnitud física que mide la proyección de la fuerza en dirección perpendicular por unidad de superficie, y sirve para caracterizar cómo se aplica una determinada fuerza resultante sobre una línea.

En el Sistema Internacional de Unidades la presión se mide en una unidad derivada que se denomina pascal (Pa) que es equivalente a una fuerza total de un newton (N) actuando uniformemente en un metro cuadrado (m²).​ En el Sistema Inglés la presión se mide en libra por pulgada cuadrada (pound per square inch o psi) que es equivalente a una fuerza total de una libra actuando en una pulgada cuadrada.

Física

La física es una de las ciencias naturales que se encarga del estudio de la energía, la materia y el espacio-tiempo, así como las interacciones de estos tres conceptos entre sí.

La física es una de las más antiguas disciplinas académicas, tal vez la más antigua, ya que la astronomía es una de sus subdisciplinas. En los últimos dos milenios, la física fue considerada parte de lo que ahora llamamos filosofía, química, y ciertas ramas de la matemática y la biología, pero durante la Revolución Científica en el siglo XVII surgió para convertirse en una ciencia moderna, única por derecho propio. Sin embargo, en algunas esferas como la física matemática y la química cuántica, los límites de la física siguen siendo difíciles de distinguir.

Esta disciplina incentiva competencias, métodos y una cultura científica que permiten comprender nuestro mundo físico y viviente, para luego actuar sobre él. Sus procesos cognitivos se han convertido en protagonistas del saber y hacer científico y tecnológico general, ayudando a conocer, teorizar, experimentar y evaluar actos dentro de diversos sistemas, clarificando causa y efecto en numerosos fenómenos. De esta manera, la física contribuye a la conservación y preservación de recursos, facilitando la toma de conciencia y la participación efectiva y sostenida de la sociedad en la resolución de sus propios problemas.

La física es significativa e influyente, no solo debido a que los avances en la comprensión a menudo se han traducido en nuevas tecnologías, sino también a que las nuevas ideas en la física resuenan con las demás ciencias, las matemáticas y la filosofía.

La física no es solo una ciencia teórica, es también una ciencia experimental. Como toda ciencia, busca que sus conclusiones puedan ser verificables mediante experimentos y que la teoría pueda realizar predicciones de experimentos futuros basados en observaciones previas. Dada la amplitud del campo de estudio de la física, así como su desarrollo histórico con relación a otras ciencias, se la puede considerar la ciencia fundamental o central, ya que incluye dentro de su campo de estudio a la química, la biología y la electrónica, además de explicar sus fenómenos.

La física, en su intento de describir los fenómenos naturales con exactitud y veracidad, ha llegado a límites impensables: el conocimiento actual abarca la descripción de partículas fundamentales microscópicas, el nacimiento de las estrellas en el universo e incluso conocer con una gran probabilidad lo que aconteció en los primeros instantes del nacimiento de nuestro universo, por citar unos pocos campos.

Esta tarea comenzó hace más de dos mil años con los primeros trabajos de filósofos griegos como Demócrito, Eratóstenes, Aristarco, Epicuro o Aristóteles, y fue continuada después por científicos como Galileo Galilei, Isaac Newton, Leonhard Euler, Joseph-Louis de Lagrange, Michael Faraday, William Rowan Hamilton, Rudolf Clausius, James Clerk Maxwell, Hendrik Antoon Lorentz, Albert Einstein, Niels Bohr, Max Planck, Werner Heisenberg, Paul Dirac, Richard Feynman, Stephen Hawking, Edward Witten, entre muchos otros.